Skip to content

AngusTester Error Diagnosis and Resource Bottleneck Identification Guide

Why Analyze Errors and Resource Bottlenecks

Diagnosing errors and resource bottlenecks is critical for system health:

  1. Stability Assurance: Detect and fix potential failure points before production crashes
  2. Performance Optimization: Pinpoint bottlenecks for targeted improvements
  3. Cost Control: Prevent resource over-provisioning and optimize ROI
  4. Capacity Planning: Provide data-driven basis for system scaling
  5. SLA Compliance: Ensure critical service level agreement metrics are met

Diagnosis and Analysis Workflow

⚡ Error Analysis Workflow

  1. Identify high-error time windows
  2. Analyze error type distribution
  3. Correlate status code patterns
  4. Trace logs to locate root cause

⚡ Performance Baseline Establishment

  1. Create zero-latency benchmark interface
  2. Capture network-layer performance data
  3. Eliminate business logic interference

Professional Error Analysis Process

1. Global Error Trend Analysis

Error Count Fluctuation Trend

  • Key Observation Metrics:
    • Total error trend curve
    • Error rate change pattern
    • Error occurrence time distribution

2. Root Cause Classification

Error Type Distribution

Error Type Diagnosis Matrix:

Error CategoryTypical CausesResolution Suggestions
Connection TimeoutNetwork interruption/firewall restrictionsCheck network config & security policies
Service DenialService overload/thread pool exhaustionScale nodes/adjust thread pool config
Protocol ErrorAPI changes/version incompatibilityValidate API compatibility
Data Validation FailureData format changes/validation logic updatesUpdate test dataset
System ExceptionMemory leaks/resource exhaustionResource monitoring & troubleshooting

3. HTTP Status Code Analysis

Status Code Distribution

Key Status Code Diagnosis Guide:

  • 4xx Client Errors:
    • 401/403: Authentication/authorization issues
    • 404: API path changes
    • 429: Rate limiting triggered
  • 5xx Server Errors:
    • 500: Unhandled server exceptions
    • 502/503: Upstream service unavailable
    • 504: Service response timeout

Precise Resource Bottleneck Identification

1. CPU Resource Analysis

CPU Utilization Deep Dive

CPU Metric Interpretation Table:

MetricHealthy RangeRisk ThresholdSymptomsOptimization Suggestions
User-space CPU<60%>75%High app logic consumptionCode optimization/thread control
System-space CPU<20%>40%High kernel scheduling overheadSystem tuning/interrupt optimization
I/O Wait CPU<10%>30%Storage bottleneckSSD upgrade/IO scheduler tuning
Idle CPU>25%<10%Resource shortageNode scaling
Total Utilization<75%>85%Overall overloadService decomposition/load balancing

2. Memory Resource Analysis

Memory Usage Deep Dive

Memory Problem Diagnosis Tree:

  • High Memory Usage:
    • Application memory leak → Heap analysis tools
    • Excessive cache usage → Cache strategy optimization
  • Abnormal Swap Usage:
    • Physical memory shortage → Memory scaling
    • Incorrect swap configuration → Adjust swappiness

3. Storage Performance Analysis

  • IOPS Throughput Analysis Disk IOPS MonitoringFocus: Peak R/W operation frequency vs response latency correlation

  • Data Throughput Analysis Disk Throughput MonitoringKey Diagnosis: Data transfer bandwidth vs network capacity matching

Storage Optimization Matrix:

Problem TypeDetection MethodOptimization Strategy
IOPS BottleneckMonitor R/W operation frequencySSD upgrade/RAID optimization
Throughput LimitCheck data transfer rateStriped storage/10GbE network
High LatencyTrack IO response timeCache strategy/filesystem tuning

4. Network Traffic Analysis

Network Traffic Monitoring

Network Diagnosis Metrics:

MetricHealthy StandardProblem IndicatorOptimization Suggestions
Inbound Traffic<80% bandwidthSustained exceedanceBandwidth scaling/CDN implementation
Outbound Traffic<80% bandwidthSustained exceedanceP2P optimization/data compression
Packet Error Rate<0.1%>1%Driver update/hardware check
Connection Count<80% max>90%Connection pool tuning/port expansion

Expert Optimization Recommendations

  1. Correlation Analysis Principle:

    • Correlate error spikes with resource usage peaks
    • Monitor error rate vs response time correlation
  2. Capacity Planning Formula:

Required Nodes = (Current Peak TPS × Growth Factor) / (Max TPS per Node × Redundancy Factor)


3. **Monitoring Alert Strategy**:
 - Error rate >0.1% for 5+ minutes triggers warning
 - CPU >80% for 10+ minutes triggers scaling alert
 - Memory usage >85% triggers leak detection

<br>

**Start Error Diagnosis and Bottleneck Analysis Now**: [🔗 Enter AngusTester Console 🔗](https://gm.xcan.cloud/signin){ .md-button .md-button--primary }

Last updated:

Released under the GPL-3.0 License.